
DMN 1.1 Reference Guide
Quickly understanding and using the
Decision Model and Notation standard

ACTICO DMN 1.1 Reference Guide | 1

Table of Content

Decision Requirements Diagram & Decision Services � 2
Decision Requirements Diagram (DRD) � 2
Decision Services � 2
Information Items � 2

Boxed Expressions � 4
Data Types � 8

Null � 8
Basic Data Types � 9
Item Definitions � 9

FEEL Expressions � 10
Arithmetic � 10
Ranges and Range Comparison (Interval) � 10
Logical Comparison � 10
Conjunction & Disjunction � 11
Semantics of Date, Time, Date and Time and Duration Properties � 11
Other � 13

FEEL Function Reference � 16
Conversion Functions � 17
List Functions � 19
Sort Function � 20
Boolean Function � 20
String Functions � 21
Numeric Functions � 21

Start with DMN now! www.actico.com/actico-platform

With this reference guide, we want to help decision modelers around the globe successfully adopt
the Decision Model and Notation (DMN). DMN is a standard defined by the Object Management
Group (OMG®). It defines a business-friendly notation to describe how decisions are made. It also
defines a way to express the actual decision logic used to make decisions, allowing companies to
automate operational decision-making.

DMN key concepts are:

•	 Decision Requirements Diagram (DRD): The standard defines Decision Requirements Diagrams
(DRD) to illustrate business decisions, the information required to make these decisions and
their dependencies.

•	 Decision Logic: The standard defines how the actual decision logic of individual decisions can
be described using so-called „boxed expressions“. This includes but is not limited to decision
tables.

•	 Expression Language (FEEL): Finally, the standard defines an expression language named FEEL
(Friendly Enough Expression Language) that defines how to express the conditions and calcula-
tions in the decision logic.

ACTICO Platform fully supports all parts of the DMN standard. You can create DMN models with
multiple Decision Requirement Diagrams (DRD), describe the decision logic using all boxed expres-
sions defined by DMN, and use the full FEEL expression language.

Welcome to the DMN 1.1 Reference Guide!

http://www.actico.com/actico-platform

2 | ACTICO DMN 1.1 Reference Guide ACTICO DMN 1.1 Reference Guide | 3

Decision Requirements Diagram (DRD)

The Decision Requirements Diagram (DRD) is a business-friendly illustration of decisions and their
dependencies. It can be used to describe human or automated decision-making or a mix thereof.

•	 A DRD often has a tree-like structure with the main decision at the top. However, you can draw
the diagram in any way you like so that it makes sense to you.

•	 A DRD may show only a subset of the elements of a DMN model. It may show also elements of
imported (other) DMN models.

•	 Names are used for Decisions, Input Data, Business Knowledge Models, Context entries, Relation
columns, Function parameters, Decision Table output clauses and Item Definitions.

•	 Names are case-sensitive and must not start with a keyword.

•	 Names must be unique within a model (namespace).

•	 Names can contain upper- and lowercase letters and digits. They can also include single
spaces, dashes (-), plus signs (+), asterisks (*), dashes (/), apostrophes ('), dots (.) and
ampersands (&).

Decision Services

Decision Services are a layer on top of the mo-
del illustrated as a box with two compartments.

•	 The top compartment contains evaluated
Decisions whose results shall be the result
of the Decision Service.

•	 The bottom compartment contains all
Decisions that shall be evaluated during
Decision Service execution but are not part
of the result.

•	 Any Decision and Input Data elements out-
side the Decision Service box with informa-
tion requirements to Decisions inside the
Decision Service are inputs to the Decision
Service. Their values need to be provided
when calling the Decision Service.

•	 BKMs or Knowledge Sources can be placed
anywhere. Their location has no effect on
the definition of the Decision Service.

Decision Requirements Diagram & Decision Services

Information Items

Information Items are variables and consist of a
name and a type (basic or custom).

•	 An Information Item must be defined for an
Input Data, Decision, BKM, Context entry,
Relation column, Function Definition para-
meter, Function Invocation parameter, and
also for Decision Table output columns, if
the Decision Table has more then one out-
put column. During evaluation a value is
assigned to an Information Item and it can
be accessed via its name.

•	 Nested name access for nested Item Defini-
tions is possible via qualified names.

•	 For a Decision and BKM all incoming Infor-
mation Requirements and Knowledge Requi-
rements are in scope. For a boxed expres-
sion all Information Items that are defined
before and above that boxed expression are
in scope.

A Decision represents the act of
determining an outcome from se-
veral inputs using decision logic.

Input Data denotes the informa-
tion needed as input by one or
multiple Decisions.

A Business Knowledge Model (BKM)
represents reusable business logic.
It can be invoked from Decisions,
other BKMs or FEEL expressions.

Knowledge Sources represent
authorities for a Decision, a BKM
or another Knowledge Source, e.g.
policies, regulations or people.

Information Requirements connect
an Input Data or a Decision with a
Decision that needs the Input Data
or Decision.

A Decision Service defines a techni-
cal boundary for execution and
automation of Decisions.

Knowledge Requirements are used
to invoke a BKM. They point from
the BKM to the Decision or BKM
invoking it.

Authority Requirements point from
a Knowledge Source to other ele-
ments that are influenced by the
Knowledge Source.

Text Annotations are used to add
explanations or comments.

An Association links a Text Annota-
tion to a DRD element.

 Text annotation

Text Annotation

Decision

Sub-Decision 1

Input Data 1 Input Data 2

Sub-Decision 2 Knowledge Source

Input Decision

Business
Knowledge Model 1

Business
Knowledge Model 2

4 | ACTICO DMN 1.1 Reference Guide ACTICO DMN 1.1 Reference Guide | 5

The DMN standard defines how the actual decision logic of individual Decisions and BKMs can be
described using so-called „Boxed Expressions“. Boxed expressions can be nested within other bo-
xed expressions. However, Literal Expressions and Decision Tables do not allow nesting.

Literal Expression
A Literal Expression is a box containing
just one expression that defines how
an output value is derived from its
input values. Almost every box within
the other boxed expressions is a Lite-
ral Expression.

List
A List is used to represent multiple
values. It is represented as a vertical
list of boxed expressions that are
numbered starting from 1.

Context
A Context is a table with two columns
with an optional result box at the bot-
tom. A Context allows to define names
for partial or intermediate results.
This way, decision logic can be broken
down into smaller steps.

Boxed Expressions

FEEL expression

base price + discount

IsStudent true

Course "Business Administration"

CurrentSemesterNo 4

MaxSemesterNo 6

if CurrentSemesterNo > MaxSemesterNo then "Contact Student"

Context entry value
(boxed expression)

Context entry
name (variable)

Result box
(optional)

List entries

1 "United States"

2 "Germany"

3 "Switzerland"

4 "Singapore"

Position

Relation
A Relation is like a spreadsheet or a
relational database table. It is a list
but every element is a Context with the
same entries. Elements are vertically
listed and numbered. Every row is an
element and specifies the values for
its Context entries in its columns.

Function Definition
A Function Definition allows to define
a custom function. It can be invoked
either from Literal Expressions using
FEEL or from a Function Invocation
boxed expression. The Function Defini-
tion consists of two cells: a parameter
list in the top and the body of the
function in the bottom cell.

Function Invocation
Allows to call a BKM, a Function Defi-
nition or a FEEL built-in function, pass
parameters and receive the result.
A Function Invocation is similar to a
FEEL function call. However, a Function
Invocation requires at least one para-
meter while FEEL can call functions
without parameters.

Entry values

Name Birthday Gender

1 "Peter" date("1985-07-23") "M"

2 "Alice" date("2000-12-24") "F"

3 "Bob" date("1970-01-14") "M"

Column names (variable)Position

Parameter list

Body
(any boxed expression)

(Base, Percentage, Years)

Base*Percentage / 100*Years

Boxed expression or name of the BKM or
function to be called

Parameter name

Parameter
value to be
passed
(any boxed
expression)

 Eligibility Rules

Applicant Application.applicant

Product Product.wkn

Country Bureau.location.country

6 | ACTICO DMN 1.1 Reference Guide ACTICO DMN 1.1 Reference Guide | 7

U
Existing Customer Risk Score Risk Category

true, false "HIGH", "MEDIUM", "LOW"

1 true <10 "LOW"

2 true [10..50] "MEDIUM"

3 true >50 "HIGH"

4 false <10 "MEDIUM"

5 false >=10 "HIGH"

Input columns

Input expressions

Input entries Output expressions

Output columnHit policy

Rules

Allowed
values

Decision Table
A Decision Table is a tabular representation of multiple rules to make a decision. The rules
in a Decision Table are numbered starting from 1. Rules fire based on the values of one or
multiple inputs (blue input columns). In its simplest form, the rules (= rows or columns, de-
pending on the orientation) of the Decision Table define different conditions for the inputs
and if all of a rule’s conditions are fulfilled, the Decision Table produces the output values
specified in one or multiple output columns (red) of that rule. However, depending on the
Hit Policy of the Decision Table, its behavior may be different from that.

Note:

•	 The rule conditions (input entries) are so-called Unary Tests.

•	 For a Decision Table, a default output value can be defined for an output column that is
used if no rule matches.

•	 Input expressions and output expressions can optionally be restricted by specifying
Allowed Values. Allowed Values are Unary Tests. They can be separated by comma.

Boxed Expressions

Hit Policies

U: Unique Only a single rule can match. Otherwise the Decision Table fails.

A: Any
Multiple rules can match that must all produce the same result.
This result is returned. If matching rules produce different results,
the decision table fails.

F: First Multiple rules can match. The result of the first matching rule is
returned.

P: Priority
Multiple rules can match and they can produce different results.
Only one result is returned which is the first to appear in the list of
allowed values.

O: Output Order
A list of the results of all matching rules is returned, in the order
of decreasing priority. Priority is determined by the list of allowed
values.

R: Rule Order A list of the results of all matching rules is returned, in the order of
the rules.

C: Collect A list of the results of all matching rules is returned.

C+: Collect (Sum) The sum of the results of all matching rules is returned.

C<: Collect (Minimum) The minimum of the results of all matching rules is returned.

C>: Collect (Maximum) The maximum of the results of all matching rules is returned.

C#: Collect (Count) The number of matching rules is returned.

8 | ACTICO DMN 1.1 Reference Guide ACTICO DMN 1.1 Reference Guide | 9

Data Types

Null

Null

DMN allows every Information Item or expression result to
be null. Consequently, the possible values for each of the
Basic Data Types always include the null value.

Note: Whenever a FEEL expression or boxed expression
can not be evaluated due to an error condition, its value
is null.

Basic Data Types

Name Example Description

number
23
-766.991
0.0006544

Decimal number (with up to 34 digits of precision).

boolean true
false Logical value of either 'true' or 'false'.

string "Honolulu"
"4200 Main St."

Sequence of characters (text). It is written with double quotes and can contain unicode characters.
Special characters like new line are not allowed. No escaping is possible.

date date(1970,1,14)
date("1970-01-14")

Value consisting of year, month (1-12), day (1-31). A date value can also be assigned to an information
item or parameter of type date and time.

time

time("12:45:00@Europe/Paris")
time("08:00:00+02:00")
time("12:45:00")
time(12,45,0,duration("PT2H"))

Value consisting of hours, minutes, seconds, optionally including fractions of a second, a timezone or a
timezone offset from GMT.

date and time
date and time("2017-12-31T11:22:33@Europe/Paris")
date and time("2017-12-31T08:00:00+02:00")
date and time("2017-12-31T11:22:33")

Combination of a 'date' and 'time' value, optionally including fractions of a second, a timezone or a
timezone offset from GMT.

days and time duration duration("P1DT2H3M4.123456789S") Value specifying a time period in days, hours, minutes, seconds, optionally including fractions of a
second.

years and months duration duration("P1Y2M") Value specifying a time period in years and months.

Item Definitions

Item Definitions

Item Definitions are custom types for Information Items that can
be used in addition to the Basic Data Types. An Item Definition can
reference another data type (basic or custom) or it consists of other
nested Item Definitions. An Item Definition can be a collection and
may define allowed values, which are a list of Unary Tests.

10 | ACTICO DMN 1.1 Reference Guide ACTICO DMN 1.1 Reference Guide | 11

Arithmetic

Name Example Description

+ 10+5 Addition

- 10-5 Subtraction

* n*5 Multiplication

/ 10/5 Division

** n**5 Exponentiation

- -(2+3) Negation

Logical Comparison

Name Example Description

= a = b Equality

!= a != b Inequality

< a < b Less than

> a > b Greater than

<= a <= b Less than or equal to

>= a >= b Greater than or equal
to

Ranges and Range Comparison (Interval)
Name Example Description

[], (), [), (],]], [[
[1.. 10]
[2..5)
[2..5) = [2..5[

A range defines an interval. A round bracket
excludes the endpoint. A square bracket in-
cludes or excludes the endpoint, depending
on the direction of the square bracket.

in 2 in (2..5]  false
2 in (>0, [10..20], 2)

The in expression can be used to test if an
expression fulfills a unary test or a single
unary test in a list of unary tests.

[from..to]
{startDate: date("2018-01-01"),
endDate: date("2018-01-31"),
range: [startDate..endDate] }

Endpoints can be names of Information
Items (e. g. to create ranges of dates or
times).

between ...
and ...

x between a and b
5 between 0 and 100

Another way to define a range check.
Between always includes the endpoints.

FEEL Expressions

Conjunction & Disjunction

a b a and b a or b

true true true true

true false false true

true otherwise null true

false true false true

false false false false

false otherwise false null

otherwise true null true

otherwise false false null

otherwise otherwise null null

Semantics of Date, Time, Date and Time and Duration Properties

Name e . name Property Names

date
Result is the named component of the
date object e. Valid names are shown to
the right.

year, month, day

date and
time

Result is the named component of the
date and time object e. Valid names are
shown to the right. time offset and time-
zone may be null.

year, month, day, hour, minute,
second, time offset, timezone

time

Result is the named component of the
time object e. Valid names are shown to
the right. time offset and timezone may
be null.

hour, minute, second, time offset,
timezone

years and
months
duration

Result is the named component of the
years and months duration object e.
Valid names are shown to the right.

years, months

days and
time dura-
tion

Result is the named component of the
days and time duration object e. Valid
names are shown to the right.

days, hours, minutes, seconds

12 | ACTICO DMN 1.1 Reference Guide ACTICO DMN 1.1 Reference Guide | 13

FEEL Expressions

Other

Name Example Description

List
[n1, n2, n3] ["Peter", "Lisa", "Pepe"] A list of values. The empty List is just written as []. Lists can be nested. A List with a single element

behaves also like the single element and vice versa.

Context
{key1: expr1, key2: expr2} {name: "Peter", age: 34} A Context defines structured data. Each entry is a pair of name and value. Contexts can be nested.

An empty Context is just written as {}.

Path
.

Customer.Age
{name: „Max“, result: string length(name)}.result  3
[{a: 1, b: true}, {a: 2, b: false}].b  [true, false]

Use the dot '.' to access an individual component, entry or result. A full path expression is called a
Qualified Name. The first part of a Qualified Name can be the namespace prefix of an imported DMN
model (e.g. lib.max(5,2,8)).

Filter
list[condition]

[1, 2, 3, 4, 5, 6][item > 4]  [5, 6]
[{x:1, y:2}, {x:2, y:3}][x=1]  [{x:1, y:2}]
[1, 2, 3, 4][-2]  3

Use a Filter to find the elements of a list that satisfy a condition. Use ‘ item‘ to refer to individual ele-
ments or, if the elements are Contexts, use the Context entry name, e.g. age. If condition is a number
value, it defines the position of the element that is filtered. Negative positions are allowed. -1 is the
last element.

Some and Every
some/every in list satisfies condition some User in Users satisfies User.Age < 40 Use ‘some’ or ‘every’ to check if elements in a list satisfy a condition. It returns either true or false.

Multiple lists can be specified.

For
for variable in list return expression for i in [1,2,3] return i * 2  [2,4,6]

Use ‘for’ to process all items from a list. ‘for’ is often used in Decisions to call decision logic in a BKM
multiple times for every element of a list. If multiple lists are specified, the return expression is called
for the cartesian product of all list items.

If
if condition then expression
else expression

if Balance > 0 then "ok" else "not ok"
Use ‘if’ to check a condition and return one thing or the other. ‘else’ expression is evaluated if ‘if’ ex-
pression is not true (e.g. null). Use ‚if‘ only for simple checks and resort to Decision Tables when things
get more complicated.

Instance of
expression instance of type if Value instance of number then Value else 1.0 Use the ‘instance of’ operator to check if a value is of a certain data type (basic or Item Definition),

e.g. if the value is a number, a valid date or a year and months duration.

14 | ACTICO DMN 1.1 Reference Guide ACTICO DMN 1.1 Reference Guide | 15

FEEL Expressions

Other

Name Example Description

Unary Test

>10
"DE"
[1..100]
["Germany", "USA", "India"]
not("Germany", "USA", "Singapore")

Use Unary Test to just check a condition.

•	A list of Unary Tests can be specified for allowed values in an Item Definition, for the allowed values of
an input expression and output expression in a Decision Table and for the FEEL in expression.

•	A single Unary Test can be used as input entry in a Decision Table and for the FEEL in expression.

•	To evaluate a Unary Test, a left operand is necessary. Depending on the context, it is automatically
set. The result of a Unary Test is either true or false.

•	 The Unary Test '-' is always true. In a Decision Table, the dash marks an irrelevant input.

•	A Unary Test can be a range, an endpoint (e.g. 3, true, "ACTICO") or a comparison with missing left
operand (e.g. > 10). Available operators are: <, <=, >, >=.

•	To negate a Unary Test, use 'not' and parentheses around the whole test.

Function Definition

function(param1, param2) <body>

function(param1, param2)
external { java: { class: "<classname>",
method signature: "<methodname>
(paramType1, paramType2)" } }

{ add: function(a,b) a + b }.add(3,5)  8

{ max: function(a, b) external { java: { class: "java.lang.
Math", method signature: "max(int, int)" } } }.max(-1, 5)
 5

Use a Function Definition to define custom functions or to define how public static Java methods are
called. Functions should be modeled using a Function Definition boxed expression whenever possible

Use user-defined functions to define custom functions.

•	Use parentheses to define parameter names and replace <body> with the function body.

•	They can be called by name, if they are assigned to an Information Item, for example a Context entry.

Use externally-defined functions to define how public static Java methods are called.

Function Invocation

positional: function(param 1, param2)

named: function(name2: param2)

string length("actico")
max([4,9,2,1])
list contains(element: 1, list: [5,7,-1,1])

Allows you to invoke a Function, that is either a built-in function listed in the FEEL Function Reference,
a custom function or a BKM. Parameters can be passed positional or by name. By passing it per name,
not all parameter values must be specified. For missing parameters null is used.

16 | ACTICO DMN 1.1 Reference Guide ACTICO DMN 1.1 Reference Guide | 17

FEEL Function Reference

Conversion Functions

Name Example Description

number(from : string, grouping separator :
string, decimal separator : string) number("1 000,0", " ", ",") → 1000.0 convert from to a number

string(from : any) string(1.1) → "1.1" convert from to a string

date(from : string) date("2012-12-25") – date("2012-12-24")
→ duration("P1D") convert from to a date

date(from : date and time) date(date and time("2012-12-25T11:00:00Z"))
→ date("2012-12-25") convert from to a date (set time components to null)

date(year : number, month : number,
day : number) date(2012, 12, 25) → date("2012-12-25") creates a date from year, month, day component values

date and time(date : date or date and time,
time : time)

date and time (date(„2012-12-24“), time(„23:59:00“))
→ date and time („2012-12-24T23:59:00“) creates a date and time from the given date and the given time

date and time(from : string) date and time("2012-12-24T23:59:00") + duration("PT1M")
→ date and time("2012-12-25T00:00:00") convert from to a date and time

time(from : string) time("23:59:00z") + duration("PT2M")
→ time("00:01:00Z") convert from to time

time(from : date and time) time(date and time("2012-12-25T11:00:00Z"))
→ time("11:00:00Z") convert from to time (ignoring date components)

time(hour : number, minute : number,
second : number, offset : days and time
duration)

time(23, 59, 0, duration("PT0H")) → time("23:59:00Z") creates a time from the given component values

duration(from : string)
duration("P2Y14M") → duration("P3Y2M")
duration("P2D")
duration("PT1H2M3.456S")

convert from to a days and time or years and months duration

years and months duration
(from : date, to : date)

years and months duration(date("2011-12-22"),
date("2013-08-24")) → duration("P1Y8M") return years and months duration between from and to

years and months duration
(from : date and time, to : date and time)

years and months duration(date and time("2011-12-22"),
date and time("2013-08-24")) → duration("P1Y8M") return years and months duration between from and to

get entries(m : context) get entries({a: 1, b: true})
→ [{key: "a", value: 1},{key: "b", value: true}] returns the context entries as a relation with the keys "key" and "value".

18 | ACTICO DMN 1.1 Reference Guide ACTICO DMN 1.1 Reference Guide | 19

List Functions

Name Example Description

list contains
(list : list, element : any) list contains([1,2,3], 2) → true does the list contain the element?

count(list : list) count([1,2,3]) → 3 return size of list, or 0 if list is empty.

min(list : list)
min(c1 : any,… ,cn : any)
max(list : list)
max(c1 : any,… ,cn : any)

min([1,2,3]) → 1
min(1,2,3) → 1
max([1,2,3]) → 3
max(1,2,3) → 3

return minimum or maximum item from list (or from c1,…,cn), or null if list is empty.

sum(list : list)
sum(n1 : number,… ,nn : number)

sum([1,2,3]) → 6
sum(1,2,3) → 6 return sum of numbers, or null if list is empty.

mean(list : list)
mean(n1 : number,… ,nn : number)

mean([1,2,3]) → 2
mean(1,2,3) → 2 return arithmetic mean (average) of numbers, or null if list is empty.

and(list : list)
and(b1 : boolean,… ,bn : boolean)

and([false,null,true]) → false
and([]) → true

return false if any item is false, else true if empty or all items are true, else null.
In DMN 1.2 this function is renamed to all(). ACTICO supports both names.

or(list : list)
or(b1 : number,… ,bn : number)

or([false,null,true]) → true
or([]) → false

return true if any item is true, else false if empty or all items are false, else null.
In DMN 1.2 this function is renamed to any(). ACTICO supports both names.

sublist(list : list, start position : number,
length? : number) sublist([4,5,6], 1, 2) → [4,5] return list of length (or all) elements of list, starting at start position. 1st position is 1,

last position is -1. Parameter length is optional.

append(list : list, item… : any) append([1], 2, 3) → [1,2,3] return new list with items appended. items can be null.

concatenate(list… : list) concatenate([1,2],[3]) → [1,2,3] return new list that is a concatenation of the arguments.

insert before(list : list, position : number,
newItem : any) insert before([1,3],1,2) → [2,1,3] return new list with newItem inserted at position.

remove(list : list, position : number) remove([1,2,3], 2) → [1,3] list with item at position removed.

reverse(list : list) reverse([1,2,3]) → [3,2,1] reverse the list.

index of(list : list, match : any) index of([1,2,3,2],2) → [2,4] return ascending list of list positions containing match.

union(list… : list) union([1,2],[2,3]) → [1,2,3] concatenate with duplicate removal.

distinct values(list : list) distinct values([1,2,3,2,1]) → [1,2,3] duplicate removal.

flatten(list : list) flatten([[1,2],[[3]], 4]) → [1,2,3,4] flatten nested lists.

20 | ACTICO DMN 1.1 Reference Guide ACTICO DMN 1.1 Reference Guide | 21

Sort Function

Name Example Description

sort(list : list, precedes? :
function)

sort(list: [3,1,4,5,2], precedes:
function(x,y) x < y) → [1,2,3,4,5]

sort a list using an ordering
function precedes, which must
be a boolean function with 2
arguments.

Boolean Function

Name Example Description

not(negand : boolean) not(true) → false
not(null) → null Logical negation

String Functions

Name Example Description

substring(string : string, start position :
number, length? : number) substring("actico",3) → "tico" return length (or all) characters in string. Parameter length is optional.

string length(string : string) string length("act") → 3 return length of string

upper case(string : string) upper case("aBc4") → "ABC4" return uppercased string

lower case(string : string) lower case(„aBc4“) → „abc4“ return lowercased string

substring before(string : string,
match : string) substring before("actico", " ico") → "act" return substring of string before the match in string

substring after(string : string, match : string) substring after("actico", "ti") → "co" return substring of string after the match in string

contains(string : string, match : string) contains("actico", "ca") → false does the string contain the match?

starts with(string : string, match : string) starts with("actico", "ac") → true does the string start with the match?

ends with(string : string, match : string) ends with("actico", "o") → true does the string end with the match?

replace(input : string, pattern : string,
replacement : string, flags? : string)

replace("abcd", "(ab)|(a)", "[1=$1][2=$2]")
→ "[1=ab][2=]cd"

regular expression pattern matching and replacement. Parameter flags is a string with the following
options: s, m, i, x. Parameter flags is optional.*

matches(input : string, pattern : string,
flags? : string) matches("actico", "^AC*T", " i") → true does the input match the regexp pattern? Parameter flags is a string with the following options: s, m, i,

x. Parameter flags is optional.*

Numeric Functions

Name Example Description

decimal(n : number,
scale : number)

decimal(1/3, 2) → .33
decimal(1.5, 0) → 2

return n with given scale. scale
is in the range [-6111..6176].

floor(n : number) floor(1.5) → 1
floor(-1.5) → -2 return greatest integer <= n

ceiling(n : number) ceiling(1.5) → 2
ceiling(-1.5) → -1 return smallest integer >= n

* Valid flag options: s (dot all mode), m (multiline), i (case insensitive), x (whitespace removal)

ACTICO is a leading international provider of software solutions and technologies for
decision management.
In a digital world, it is necessary to process large volumes of data and make real-time,
consistent and auditable decisions. ACTICO software allows companies to implement
highly flexible applications to optimize their daily decision-making on a continuous
basis. This enables them to accelerate growth, innovate effectively, stay compliant and
as a result, increase profits.

ACTICO offers solutions in these areas:

•	 	Credit Risk Management: Monitor, assess and manage credit risk
•	 	Loan Origination: Automate credit decisions
•	 	Compliance: Enable transparency, avoid fraud and comply with regulations
•	 	Client Management: Process sensitive customer data securely - from onboarding to

reporting

•	 	Underwriting & Claims: Make claim settlement processes quicker, consistent and
cost-effective

Since 1997, ACTICO has delivered software and services to our customers’ benefits. Head-
quartered in Germany with offices in USA and Singapore.
More information at www.actico.com

Asia

ACTICO Pte. Ltd.
#11 - 04, The Arcade
11 Collyer Quay
049317 Singapore

info@actico.com
www.actico.com

America

ACTICO Corp.
200 S. Wacker
Dr. Suite 3100
Chicago, IL 60606/USA

info@actico.com
www.actico.com

Europe

ACTICO GmbH
Ziegelei 5
88090 Immenstaad
Germany

info@actico.com
www.actico.com

ACTICO

