02. Feb. 2021

Wealth management redefined using artificial intelligence

About this report

With the apparent advantages of using data-driven insights to develop their business, many wealth managers are beyond the point of just thinking about data science. However, many of them get confronted with the complexity and incalculable difficulties of AI projects rather sooner than later.

This report highlights the strains and prospects of a data science implementation project and helps wealth managers focus on tangible business benefits with three practical use cases of data-driven solutions.

Download the whitepaper

Get started with data science

How wealth managers use their data will define their competitiveness. Existing AI implementations unlocked a significant growth potential for financial institutions.

3 practical use cases to successfully adopt data science

Case Study 1

Helping compliance officers fight the many false positives and focus on real risks

Case Study 2

Helping relationship managers better understand their clients and identify prospects

Case Study 3

Networks could help avoid the next financial crisis and enable credit risk officers spot aggregated risks

Our 3 steps for wealth managers to better exploit their data

  1. Build a strategic AI roadmap following a user-centric approach clustered in different business domains and driven by clear use cases.
     
  2. Overcome integration complexity with a powerful, experienced service partner to keep costs and project value at a balance.
     
  3. Make sure your solution profits from the deep learning effect which requires access to lots of diverse training data.

Read our report to learn more about how to accelerate the use of AI in your organization.